Abstract

In a 16-wk study, weanling Wistar rats (32 males and 32 females) were fed a modified AIN-76 diet containing 20% fat with various (n-3) fatty acids. All dietary fats provided the same amount of saturates, monounsaturates, and total essential fatty acids [(n-6) + (n-3)]. The control diet contained lard/corn oil (L/CO). The other diets contained (n-3) fatty acids from linseed oil (LSO), from linseed oil + menhaden oil (LSO + MO) or from menhaden oil (MO). The (n-3) diets reduced total and HDL-cholesterol, particularly in rats fed the MO diet. Platelet thromboxane levels were equally depressed by the LSO and MO diets. Dietary (n-3) fatty acids significantly elevated docosahexaenoic acid in livers and hearts of male and female rats, with females reaching higher levels. This increase was accompanied by reduced arachidonic acid, except for hearts of females in which the major decrease was in linoleic acid. Overall, enzyme activities in the MO-fed group were decreased to the following levels (relative to the activity in the control group): heart Mn superoxide dismutase (SOD), 28%; liver CuZnSOD, 82%; aorta CuZnSOD, 32%. Greater reductions in these enzyme activities were seen in the female rats fed the MO diet compared with male rats. Lipid peroxidation, assessed by urinary, heart and liver thiobarbituric acid reactants, was increased by dietary (n-3) fatty acids (MO greater than LSO + MO greater than LSO greater than L/CO) and was higher in females than in males. These results indicate that enhanced lipid peroxidation occurs with the increased oxidative stress of elevated tissue (n-3) fatty acids accompanied by reduced SOD activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.