Abstract

Steady-state visual evoked potentials (SSVEP) can be used to test the topological response of cortical neurons. Studies have shown that a lutein (L) preferentially accumulates within cortical tissue. L, zeaxanthin (Z), and their isomers can be measured directly in retina (macular pigment optical density, MPOD), and retinal L+Z correlate highly with L+Z levels in cortical visual processing areas. The purpose of this study was to determine the relation between MPOD and SSVEP signal power, cross-sectionally and after supplementation with L+Z. SSVEP to three different driving frequencies of stimulation (5, 10, and 16.6 Hz) were obtained for community-dwelling older adults, at baseline and after 12 months of supplementation with either 12 mg L+Z or placebo. Power was quantified at the driving frequencies. Non-specific activation was quantified within the 10-15 Hz band. MPOD was measured psychophysically. Subjects with low MPOD had reduced power at 16.6 Hz and reduced non-specific activation, compared with subjects with high MPOD. Supplementation significantly improved signal power at 5 and 10 Hz. Past research suggests that L+Z can improve visual memory, visual processing speeds, etc. One possible mechanism for that improvement may be improving signal-to-noise ratio throughout the vision system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.