Abstract

This paper presents a new robust method namely, unified interval Chebyshev-based random perturbation method, to tackle hybrid random interval structural natural frequency problem. In the proposed approach, random perturbation method is implemented to furnish the statistical features (i.e., mean and standard deviation) and Chebyshev surrogate model strategy is incorporated to formulate the statistical information of natural frequency with regards to the interval inputs. The comprehensive analysis framework combines the superiority of both methods in a way that computational cost is dramatically reduced. This presented method is thus capable of investigating the day-to-day based time-variant natural frequency of structures accurately and efficiently under concrete intrinsic creep effect with probabilistic and interval uncertain variables. The extreme bounds of the mean and standard deviation of natural frequency are captured through the embedded optimization strategy within the analysis procedure. Three particularly motivated numerical examples with progressive relationship in perspective of both structure type and uncertainty variables are demonstrated to justify the computational applicability, accuracy and efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.