Abstract

This paper deals with a control design problem for a diesel engine air path system that has strong nonlinearity and requires multi-input and multi-output control to satisfy requirements and constraints. We focus on a neural network based approximation of nonlinear model predictive control (NMPC) for high-speed computation. Most neural approximation methods are verified only through simulation; further, the influence of approximation on the closed-loop performance has been not sufficiently discussed. In this study, we discuss this influence, and propose a new method to improve stability against degradation due to an approximation error. The control system is assembled using a neural network based controller, obtained by the proposed method, and an unscented Kalman filter. This system is verified both numerically and experimentally; the results demonstrate the capability of the proposed method to track the boost pressure, EGR rate, and pumping loss according to the reference values, and satisfy the constraints of compressor surge and choke. The high computation speed that can be achieved using a standard on-board ECU is also demonstrated using the approximated controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.