Abstract

The manipulation and detection of rare cells are important for many applications in early disease diagnosis and medicine. This study presents a dielectrophoresis (DEP) microfluidic enrichment platform combined with a built-in capacitive sensor for circulating tumor cell detection. The microchip is composed of a lollipop-shaped gold microelectrode structure under a polydimethylsiloxane chamber. A prototype of the device was fabricated using standard micromachining technology. With the proposed device, target cells (in this study, A549 non-small human lung carcinoma and S-180 sarcoma cell lines) are firstly guided toward the center of the working chamber via DEP forces. Then, the target cells are captured by an electrode immobilized by anti-EGFR, which has high affinity toward the target cells. After the cell concentration process, the differential capacitance is read to detect the presence of the target cells. Numerical simulations and measurement experiments were performed to demonstrate the high sensitivity of differential capacitive sensing. The obtained results show high sensitivity for S-180 cell detection (3 mV/cell). The proposed platform is suitable for rapid cancer diagnoses and other metabolic disease applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.