Abstract

In this work, we have fabricated and evaluated a HfO2/Al2O3 bilayer structure for a two-terminal ReRAM device to have multiple resistance states as a function of compliance current (CC). Reduced power consumption was observed when the Al2O3 buffer layer was placed between the top electrode and the HfO2 layer as compared to when it is embedded between the HfO2 layer and the bottom electrode. Gradual resistance change capability was observed with varying CC. It was demonstrated that the presence of oxygen vacancies closer to the top electrode reduces the switching energy. Decreasing the thickness of the Al2O3 buffer layer, near the bottom electrode, increases the switching power requirement. It was also observed that the switching energy requirement could be altered by modifying the deposition process of the top metal layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.