Abstract
The complex permittivity for chlorobenzene–alcohol binary mixtures have been determined over the frequency range of 10 MHz to 20 GHz, at 15, 25, 35, and 45°C, using the time-domain reflectometry (TDR) method for 11 concentrations of each chlorobenzene–alcohol system. The alcohols used were methanol, ethanol, and 1-propanol. The values of static dielectric constant, relaxation time, the corresponding excess properties, the Redlich–Kister coefficients up to the third order, the Kirkwood correlation factor, and thermodynamic parameters of the mixtures have been determined. The excess permittivity is found to be negative for chlorobenzene–methanol and chlorobenzene–ethanol, whereas it is positive in the 1-propanol rich region. The excess inverse relaxation time is negative for all the systems studied here. The Kirkwood effective correlation factor increases with an increasing in the molecular size of the alcohol, but decreases with increasing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.