Abstract

The dielectric relaxation and scaling behavior of CdS nanoparticles and nanowires were investigated in the frequency range 102–106 Hz and in the temperature range 373–573 K by complex impedance spectroscopy and electric modulus spectroscopy. Studies on the complex permittivity revealed that the dielectric relaxation in CdS nanostructures deviates from Debye like behavior. A detailed study on the grain and grain boundary charge transport was carried out. The charge carrier transport in CdS nanostructures was identified to be hopping of polarons. From the combined analysis of the variation of imaginary part of electric modulus and complex impedance with frequency, it was found that at high temperatures localized conduction is dominant in CdS nanoparticles where as the long range hopping process is dominant with nanowires. It was also found that the scaling behavior of CdS nanoparticles varied considerably from that reported earlier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.