Abstract

The optical properties of Ti2AlN and Ti2AlC were determined in the 2–80 eV energy range by electron energy loss spectroscopy and in the visible-ultraviolet range, from 1.6 to 5.5 eV, by spectroscopic ellipsometry. Both experimental techniques are angular resolved and in very good agreement over their overlapping energy range. We observe a dependence of the dielectric function as a function of the crystallographic orientation of the crystals. In particular, we notice a shift of the energy position of the plasmon absorption of Ti2AlC with respect to Ti2AlN. Moreover, a drastic change is also observed in the shape of the dielectric function as a function of the composition (or valence electron concentration). The dielectric functions are fitted to an empirical semiclassic Drude–Lorentz model to obtain physical parameters such as the relaxation times. These microscopic parameters are then used in a macroscopic model to yield the transport properties such as the static conductivity as function of the crystal orientation. Ti2AlN is found to be a better conductor than Ti2AlC in all orientations, which is consistent with experimental measurements. A comparison of the electrical and optical properties of these two compounds is made in terms of different electronic properties and interband-intraband transitions deduced from our model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.