Abstract

Semiconductor nanocrystals (NCs) of CdSe/CdS (core/shell) mono-shell and CdSe/CdS/ZnS (core/shell/shell) multi-shell having bright and stable luminescence were investigated using high energy-resolution electron energy-loss spectroscopy (EELS) based on transmission electron microscopy to evaluate their dielectric properties in the visible light energy region. EELS spectra of the mono-shell and multi-shell NCs showed two-step structures attributed to interband transitions near band gaps of individual CdSe core and CdS shell. EELS simulations based on the classical dielectric theory revealed that the two-step structures were results of dielectric response from CdSe core and CdS shell. The intensity profiles of the two-step structures depend on a thickness of CdS shells and mono/multi-shell structures of NCs. Besides, the quantum confinement effect was observed in the spectra of mono- and multi-shell NCs, where onset energy of the CdSe core was larger than that of bulk CdSe. The EELS spectra of multi-shell NCs, however, did not present an evident onset due to a bandgap of ZnS outer-shell suggesting defects or amorphous state in ZnS outer-shell. Such dielectric properties of NCs obtained from EELS analysis could provide valuable information to evaluate the crystallinity of individual core and shells in NCs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.