Abstract

Dielectric function of disorder in single-crystalline silicon (c-Si) implanted by He with energy of 40keV and fluences from 1×1016 to 1×1017cm−2 were determined around the E1 and E2 critical points (CPs) by spectroscopic ellipsometry. The implanted material was modeled by an effective medium composition of c-Si and damaged Si. The dielectric function of damaged Si was calculated using the model dielectric function of Adachi to fit the E1 and E2 CP parameters of the MDF. The penetration depth of light in the photon energy range of 3–5eV is less than 100nm, which allows a simple layer structure of (surface oxide)/(surface amorphous layer)/(c-Si+damaged Si as a substrate). The oscillator energies and strengths decrease, while the broadening parameters increase with increasing fluence. Rutherford backscattering spectrometry was used for cross-checking of the surface disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.