Abstract

Dielectric permittivity and relaxation dynamics of binary and ternary mixture of stearic acid on various concentration and their thermodynamic effects are studied. The static dielectric constant ([Formula: see text]), dielectric permittivity ([Formula: see text]) and dielectric loss ([Formula: see text]) are found by bilinear calibration. The relaxation time ([Formula: see text]), dielectric strength ([Formula: see text]) and the excess permittivity ([Formula: see text]) are found. The thermodynamic parameters such as enthalpy ([Formula: see text]), entropy ([Formula: see text]) and Gibb’s free energy ([Formula: see text]) are evolved. The significant changes in dielectric parameters are due to the intramolecular and intermolecular interactions in response to the applied frequency. The permittivity spectra of stearic acid–alcohol in the frequency range of 10[Formula: see text]MHz to 30[Formula: see text]GHz have been measured using picoseconds Time Domain Reflectometry (TDR). The dielectric parameters ([Formula: see text], [Formula: see text], [Formula: see text]) are found by bilinear calibration method. Influence of temperature in intermolecular interaction and the relaxation process are also studied. The FT-IR spectral analysis reveals that the conformation of functional groups and formation for hydrogen bonding are present in both binary and ternary mixtures of stearic acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.