Abstract

First-principles density functional theory calculations are used to reveal a quantitative relationship between the dielectric breakdown field and hydrostatic pressure of crystalline Si. The electronic band structure, phonon dispersion, and electron scattering rate are computed for pressures from 62.2 kbar (compressive) to -45.6 kbar (tensile) to estimate the rate of kinetic energy gain and loss for the electron. The theoretical dielectric breakdown fields are then determined using the von Hippel–Fröhlich criterion. Compressive stresses lead to a lower breakdown field, while significant increases in the dielectric breakdown field can be achieved by tensile stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.