Abstract
This work describes the worldwide applications of dielectric and bioimpedance measurements techniques in various fields. Dielectric and bioimpedance spectroscopy are major non-destructive measurement systems with great potential in the technology field. All results produced by the Scopus database were used as the core of the study in hand, with different items from journals, papers and conference proceedings being taken into account. The results of this analysis show that the interest in electrical properties has risen in the last years due to the advanced technological measurements offered on the scientific level. Results show that bioimpedance studies are considerably more recent compared to dielectric studies, and are more directed towards medical purposes while dielectric spectroscopy focuses on physical aspects, and is used mostly in engineering and material science. It can be stated that bioimpendance and dielectric spectroscopy are being increasingly applied and that they have the capacity to deepen and enhance research investigation.
Highlights
Electrical measurement is considered a simple tool for material characterization [1]
This work examines data pertaining to electrical characterization using dielectric and
This work examines data pertaining to electrical characterization using dielectric and bioimpedance spectroscopy from 1893 to 2016, and 1966 to 2016, respectively
Summary
Electrical measurement is considered a simple tool for material characterization [1]. Electrical impedance, as a complex resistance in the presence of alternating current, is considered to be a very useful tool to investigate the structural characteristics of plant tissues [4]. Its measurements have provided valuable data on the characterization of living tissues, such as cell size and shape, and the state of cell membranes, the status of intra and extra cellular media [5]. It provides useful physiological insights on fruit ripening [6] as well as other horticultural quality parameters. Many factors may influence the resistance during the measurements and increase the percentage of experimental errors
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.