Abstract

The ac conductivity and dielectric properties on CoFe2−xMnxO4 for x = 0.00, 0.10, 0.15 and 0.20 have been studied in detail. All the samples were prepared in nanocrystalline size. These materials are found to be crystallized to Fd <mml:math display="block"> <mml:semantics> <mml:mover accent="true"> <mml:mi>3</mml:mi> <mml:mo>¯</mml:mo> </mml:mover> </mml:semantics> </mml:math> m space group in cubic spinel structure. The dielectric constant and ac conductivity has been discussed as a function of frequency, temperature and composition. The relation between dielectric constant and ac conductivity has been analyzed and the results validate each other. The frequency response of ac conductivity (σac) obeys Johnschers power law and the parameters obtained, explain the sources of ac and dc electrical conductivity in the material. The frequency response of σac follows Maxwell–Wagner two-layer model. The influence of frequency as pumping force on activation energy has been determined. The temperature dependent ac conductivity shows the Arrhenius behavior. The σac observed to be enhanced with increase in frequency as well as temperature. The semiconducting behavior (NTCR) was also evident from temperature dependent electrical transport properties study. The low value of ac conductivity suggests a possible use of this material in dielectric applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.