Abstract

Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored.

Highlights

  • Temperature is one of the most fundamental drivers of ecosystem structure and function

  • The recent establishment of scientific networks dedicated to the collaborative analysis of high-frequency data, such as Global Lake Ecological Observatory Network (GLEON) and Networking Lake Observatories in Europe (NETLAKE), have provided an opportunity for a large-scale analysis of diel temperature variability

  • The average diel temperature range (DTR) varied seasonally across the 100 lakes investigated in this study, being largest in summer and lowest in winter (Fig 1A)

Read more

Summary

Introduction

Temperature is one of the most fundamental drivers of ecosystem structure and function It affects rates and equilibria positions of chemical reactions [1] and rates of metabolic processes, especially amongst poikilothermic aquatic organisms [2,3,4]. Knowledge of diel temperature cycles is important for, among other things, calculating biogeochemical reaction rates and gas fluxes accurately, elucidating systematic differences between different lakes and for determining whether the predominance of day-time measurements has biased limnological understanding. We have collated data from 100 lakes, that are deep enough to stratify, across four continents (S1 Table, S1 Fig), for which high-frequency temperature measurements were available, to determine the extent, and causes, of variation in diel surface temperature cycles

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.