Abstract
ObjectiveAdenosine triphosphate potassium sensitive channels provide endogenous myocardial protection via coupling of cell membrane potential to myocardial metabolism. Adenosine triphosphate potassium sensitive channel openers, such as diazoxide, mimic ischemic preconditioning, prevent cardiomyocyte swelling, preserve myocyte contractility after stress, and provide diastolic protection. We hypothesize that diazoxide combined with hyperkalemic cardioplegia provides superior myocardial protection compared with cardioplegia alone during prolonged global ischemia in a large animal model. MethodsTwelve pigs were randomized to global ischemia for 2 hours with a single dose of cold blood (4:1) hyperkalemic cardioplegia alone (n = 6) or with diazoxide (500 μmol/L) (n = 6) and reperfused for 1 hour. Cardiac output, myocardial oxygen consumption, left ventricular developed pressure, left ventricular ejection fraction, diastolic function, myocardial troponin, myoglobin, markers of apoptosis, and left ventricular infarct size were compared. ResultsFour pigs in the cardioplegia alone group could not be weaned from cardiopulmonary bypass. There were no differences in myoglobin, troponin, or apoptosis between groups. Diazoxide preserved cardiac output versus control (74.5 vs 18.4 mL/kg/min, P = .01). Linear mixed regression modeling demonstrated that the addition of diazoxide to cardioplegia preserved left ventricular developed pressure by 36% (95% confidence interval, 9.9-61.5; P < .01), dP/dt max by 41% (95% confidence interval, 14.5-67.5; P < .01), and dP/dt min by 33% (95% confidence interval, 8.9-57.5; P = .01). It was also associated with higher (but not significant) myocardial oxygen consumption (3.7 vs 1.4 mL O2/min, P = .12). ConclusionsDiazoxide preserves systolic and diastolic ventricular function in a large animal model of prolonged global myocardial ischemia. Diazoxide as an adjunct to hyperkalemic cardioplegia may allow safer prolonged ischemic times during increasingly complicated cardiac procedures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Thoracic and Cardiovascular Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.