Abstract
We recently isolated and characterized 86-amino acid CCK-releasing peptide from porcine intestinal mucosa. The sequence of this peptide is identical to that of porcine diazepam-binding inhibitor (DBI). Intraduodenal administration of DBI stimulates the CCK release and elicits pancreatic secretion in rats. In this study we utilized a murine tumor cell line (STC-1 cells) that contains CCK to examine if DBI directly acts on these cells to stimulate CCK release. We investigated the cellular mechanisms responsible for this action. We showed that DBI33-50, a biologically active fragment of DBI1-86, significantly stimulated CCK secretion in STC-1 cells. This action was abolished by Ca2+-free medium. The mean basal intracellular Ca2+ concentration ([Ca2+]i) was 52 nM in fura 2-loaded STC-1 cells. DBI33-50 (1-1,000 nM) elicited Ca2+ oscillations; DBI33-50 (10 nM) increased the oscillation frequency to 5 cycles/10 min and elicited a net [Ca2+]i increase (peak - basal) to 157 nM. In contrast, bombesin and forskolin caused an initial transient [Ca2+]i followed by a small sustained [Ca2+]i plateau. Withdrawal of extracellular Ca2+ abolished Ca2+ oscillations stimulated by DBI33-50. L-type Ca2+ channel blockers nifedipine and diltiazem (3-10 microM) markedly attenuated DBI-stimulated Ca2+ oscillations. In other cell types L-type Ca2+ channels are activated by cAMP-protein kinase A. DBI33-50 failed to stimulate cAMP formation in STC-1 cells. Similarly, DBI33-50 had no effect on myo-inositol 1,4, 5-trisphosphate concentration ([IP3]), whereas bombesin caused an eightfold increase in [IP3] over basal. In addition, inhibitors of phospholipase C (U-73122), phospholipase A2 (ONO-RS-082), and protein tyrosine kinase (genistein) did not alter the Ca2+ oscillations elicited by DBI33-50. It appears that DBI33-50 acts directly on STC-1 cells to elicit Ca2+ oscillations via the voltage-dependent L-type Ca2+ channels, resulting in the secretion of CCK. Mediation of this action is by intracellular mechanisms independent of the traditional signal transduction pathways, including phospholipase C, phospholipase A2, protein tyrosine kinase, and cAMP systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.