Abstract
Abstract Phytoplankton cells living in the surface waters of oceans are experiencing alterations in environmental conditions associated with global change. Given their importance in global primary productivity, it is of considerable concern to know how these organisms will perform physiologically under the changing levels of pH, temperatures, and nutrients predicted for future oceanic ecosystems. Here we show that the model diatom, Thalassiosira pseudonana, when grown at different temperatures (20 or 24 °C), pCO2 (400 or 1000 µatm), and nitrate concentrations (2.5 or 102.5 µmol l−1), displayed contrasting performance in its physiology. Elevated pCO2 (and hence seawater acidification) under the nitrate-limited conditions led to decreases in specific growth rate, cell size, pigment content, photochemical quantum yield of PSII, and photosynthetic carbon fixation. Furthermore, increasing the temperature exacerbated the negative effects of the seawater acidification associated with elevated pCO2 on specific growth rate and chlorophyll content under the N-limited conditions. These results imply that a reduced upward transport of nutrients due to enhanced stratification associated with ocean warming might act synergistically to reduce growth and carbon fixation by diatoms under progressive ocean acidification, with important ramifications for ocean productivity and the strength of the biological CO2 pump.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.