Abstract

ObjectivesThis study evaluated myocardial function in relation to high-energy phosphate (HEP) metabolism in asymptomatic patients with uncomplicated type 2 diabetes mellitus using magnetic resonance (MR) techniques. BackgroundMyocardial dysfunction may occur in patients with type 2 diabetes mellitus in the absence of coronary artery disease or left ventricular (LV) hypertrophy. The mechanisms underlying this diabetic cardiomyopathy are largely unknown, but may involve altered myocardial energy metabolism. MethodsWe assessed myocardial systolic and diastolic function and HEP metabolism in 12 asymptomatic normotensive male patients with recently diagnosed, well-controlled type 2 diabetes and 12 controls, using MR imaging and phosphorus-31-nuclear MR spectroscopy (31P-MRS) on a 1.5 T clinical scanner; 31P-MR spectra were quantified, and myocardial HEP metabolism was expressed as phosphocreatine to adenosine-triphosphate (PCr/ATP) ratio. ResultsNo differences were found in LV mass and systolic function between patients and controls. However, early (E) acceleration peak, deceleration peak, peak filling rate, and transmitral early-to-late diastolic peak flow (E/A) ratio, all indexes of diastolic function, were significantly decreased in patients compared with controls (p < 0.02). In addition, myocardial PCr/ATP in patients was significantly lower than in controls (1.47 vs. 1.88, p < 0.01). Inverse associations were found between myocardial PCr/ATP and E acceleration peak, E deceleration peak, and E peak filling rate (all, p < 0.05). ConclusionsThese results indicate that altered myocardial energy metabolism may contribute to LV diastolic functional changes in patients with recently diagnosed, well-controlled and uncomplicated type 2 diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.