Abstract

The nitrogen doped diamond-like carbon (DLC) thin films were deposited on quartz and silicon substrates by a newly developed microwave surface-wave plasma chemical vapor deposition, aiming the application of the films for photovoltaic solar cells. For film deposition, we used argon as carrier gas, nitrogen as dopant and hydrocarbon source gases, such as camphor (C 10H 16O) dissolved with ethyl alcohol (C 2H 5OH), methane (CH 4), ethylene (C 2H 4) and acetylene (C 2H 2). The optical and electrical properties of the films were studied using X-ray photoelectron spectroscopy, Nanopics 2100/NPX200 surface profiler, UV/VIS/NIR spectroscopy, atomic force microscope, electrical conductivity and solar simulator measurements. The optical band gap of the films has been lowered from 3.1 to 2.4 eV by nitrogen doping, and from 2.65 to 1.9 eV by experimenting with different hydrocarbon source gases. The nitrogen doped (flow rate: 5 sccm; atomic fraction: 5.16%) film shows semiconducting properties in dark (i.e. 8.1 × 10 − 4 Ω − 1 cm − 1 ) and under the light illumination (i.e. 9.9 × 10 − 4 Ω − 1 cm − 1 ). The surface morphology of the both undoped and nitrogen doped films are found to be very smooth (RMS roughness ≤ 0.5 nm). The preliminary investigation on photovoltaic properties of DLC (nitrogen doped)/p-Si structure show that open-circuit voltage of 223 mV and short-circuit current density of 8.3 × 10 − 3 mA/cm 2. The power conversion efficiency and fill factor of this structure were found to be 3.6 × 10 − 4 % and 17.9%, respectively. The use of DLC in photovoltaic solar cells is still in its infancy due to the complicated microstructure of carbon bondings, high defect density, low photoconductivity and difficulties in controlling conduction type. Our research work is in progress to realize cheap, reasonably high efficiency and environmental friendly DLC-based photovoltaic solar cells in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.