Abstract

The Liouville space spin relaxation theory equations are reformulated in such a way as to avoid the computationally expensive Hamiltonian diagonalization step, replacing it by numerical evaluation of the integrals in the generalized cumulant expansion. The resulting algorithm is particularly useful in the cases where the static part of the Hamiltonian is dominated by interactions other than Zeeman (e.g. in quadrupolar resonance, low-field EPR and Spin Chemistry). When used together with state space restriction tools, the algorithm reported is capable of computing full relaxation superoperators for NMR systems with more than 15 spins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.