Abstract

New experimental data on the laser irradiation of low-density porous materials in the Mishen facility are presented and discussed. A wide set of optical and X-ray diagnostics was used to analyze the physical processes in porous media with different microstructures and specific densities of 1–30 mg/cm3 exposed to laser pulses with λ=1.054 µm, τ=3 ns, and I=1013–1014 W/cm2. The features of laser absorption and scattering and the processes of energy transfer in porous media were investigated for different average densities, thicknesses, and microstructures of the targets and different incidence angles of the laser beam. It was found that the material microstructure (chaotic or quasi-ordered) significantly affected the formation and dynamics of a plasma produced inside the irradiated samples that model the components of the advanced targets used in inertial confinement fusion research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.