Abstract

The widespread adoption of Electronic Healthcare Records has resulted in an abundance of healthcare data. This data holds significant potential for improving healthcare services by providing valuable clinical insights and enhancing clinical decision-making. This paper presents a patient classification methodology that utilizes a multiclass and multilabel diagnostic approach to predict the patient's clinical class. The proposed model effectively handles comorbidities while maintaining a high level of accuracy. The implementation leverages the MIMIC III database as a data source to create a phenotyping dataset and train the models. Various machine learning models are employed in this study. Notably, the natural language processing-based One-Vs-Rest classifier achieves the best classification results, maintaining accuracy and F1 scores even with a large number of classes. The patient diagnostic class prediction model, based on the International Classification of Diseases 9, showcased in this paper, has broad applications in diagnostic support, treatment prediction, clinical assistance, recommender systems, clinical decision support systems, and clinical knowledge discovery engines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.