Abstract

Tokamak disruption simulation experiments have been conducted at the University of New Mexico using the PLADIS I plasma gun system. Earlier work had characterized the plasma-surface interaction in terms of parameters such as incident energy from bucket calorimeter measurements and rough measurements of beam area from flat damage targets. A variety of new plasma diagnostics have been used to further investigate the characteristics of the incident plasma beam and vapor shield plasma in a simulated tokamak disruption. These diagnostics have included laser interferometry, two-color pyrometry, emission spectroscopy, and other methods to quantify the characteristics of the incident and vapor shield plasmas of a simulated tokamak disruption. The synthesis of different beam area measurement techniques is used to determine the radial structure of the plasma beam. Vacuum ultra violet spectroscopy is used to determine the thickness and internal structure of the vapor shield plasma. Results from two-color optical pyrometry and surface pressure measurements are used to determine the dynamics of vapor shield formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.