Abstract

Chronic obstructive pulmonary disease (COPD) is a pathological pulmonary condition characterized by expiratory airflow obstruction due to emphysematous destruction of the lung parenchyma and small airways remodeling. Although spirometry is a very useful diagnostic tool for screening large groups of smokers, it cannot readily differentiate the etiologies of COPD and thus has limited utility in characterizing subjects for clinical and investigational purposes. There has been a longstanding interest in thoracic imaging and its role in the in vivo characterization of smoking-related lung disease. Research in this area has spanned readily available modalities such as chest -ray and computed tomography to more advanced imaging techniques such as optical coherence tomography (OCT) and magnetic resonance imaging (MRI). Although the chest x-ray is almost universally available, it lacks sensitivity in detecting both airway disease and mild emphysema and is not generally amenable to objective analysis. Computed tomography has become the standard modality to objectively visualize lung disease. It can provide useful measures of the presence and extent of emphysema, airway disease, and, more recently, pulmonary vascular disease for clinical correlation. It does, however, face limitations in standardization across brands and generations of scanners, and the ionizing radiation associated with image acquisition is of concern to both patients and health care providers. Newer techniques such as OCT and MRI offer exciting in vivo insights into lung structure and function that were previously available only in necropsy specimens and physiology laboratories. Given the more limited availability of these techniques, they will be viewed here as adjuncts to computed tomographic imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.