Abstract

Traditional biomarkers such as alanine and aspartate aminotransferase (ALT, AST) and total bilirubin (TBIL) have been widely used for detecting drug-induced liver injury (DILI). Although the Food and Drug Administration (FDA) proposed standardized thresholds for human as Hy's law, those for animals have not been determined, and predictability of these biomarkers for future onset of hepatic lesions remains unclear. In this study, we investigated these diagnostic and predictive performance of 10 traditional biomarkers for liver injury by receiver-operating characteristic (ROC) curve, using a free-access database where 142 hepatotoxic or non-hepatotoxic compounds were administrated to male rats (n=5253). Standardization of each biomarker value was achieved by calculating the ratio to control mean value, and the thresholds were determined under the condition of permitting 5% false positive. Of these 10 biomarkers, AST showed the best diagnostic performance. Furthermore, ALT and TBIL also showed high performance under the situation of hepatocellular necrosis and bile duct injury, respectively. Additionally, the availability of the diagnostic thresholds in difference testing facility was confirmed by the application of these thresholds to in-house prepared dataset. Meanwhile, incorrect diagnosis by the thresholds was also observed. Regarding prediction, all 10 biomarkers showed insufficient performance for future onset of hepatic lesions. In conclusion, the standardized diagnostic thresholds enable consistent evaluation of traditional biomarkers among different facilities, whereas it was suggested that novel biomarker is required for more accurate diagnosis and prediction of DILI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.