Abstract
The potential for rotor component shedding in rotating machinery poses significant risks, necessitating the development of an early and precise fault diagnosis technique to prevent catastrophic failures and reduce maintenance costs. This study introduces a data-driven approach to detect rotor component shedding at its inception, thereby enhancing operational safety and minimizing downtime. Utilizing frequency analysis, this research identifies harmonic amplitudes within rotor vibration data as key indicators of impending faults. The methodology employs principal component analysis (PCA) to orthogonalize and reduce the dimensionality of vibration data from rotor sensors, followed by k-fold cross-validation to select a subset of significant features, ensuring the detection algorithm's robustness and generalizability. These features are then integrated into a linear discriminant analysis (LDA) model, which serves as the diagnostic engine to predict the probability of rotor component shedding. The efficacy of the approach is demonstrated through its application to 16 industrial compressors and turbines, proving its value in providing timely fault warnings and enhancing operational reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.