Abstract

Acute hyperglycemia is a common endocrine and metabolic disorder that seriously threatens the health and life of patients. Exploring effective diagnostic methods and treatment strategies for acute hyperglycemia to improve treatment quality and patient satisfaction is currently one of the hotspots and difficulties in medical research. This article introduced a method for diagnosing acute hyperglycemia based on data-driven prediction models. In the experiment, clinical data from 1000 patients with acute hyperglycemia were collected. Through data cleaning and feature engineering, 10 features related to acute hyperglycemia were selected, including BMI (Body Mass Index), TG (triacylglycerol), HDL-C (High-density lipoprotein cholesterol), etc. The support vector machine (SVM) model was used for training and testing. The experimental results showed that the SVM model can effectively predict the occurrence of acute hyperglycemia, with an average accuracy of 96 %, a recall rate of 84 %, and an F1 value of 89 %. The diagnostic method for acute hyperglycemia based on data-driven prediction models has a certain reference value, which can be used as a clinical auxiliary diagnostic tool to improve the early diagnosis and treatment success rate of acute hyperglycemia patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.