Abstract
Abstract This study uses backward trajectories derived from North American Regional Reanalysis data for 19 253 flash flood reports during the period 2007–13 published by the National Weather Service to assess the origins of air parcels for flash floods in the conterminous United States. The preferred flow paths for parcels were evaluated seasonally and for six regions of interest: the West Coast, Arizona, the Front Range of the Rocky Mountains, Flash Flood Alley in south-central Texas, the Missouri Valley, and the Appalachians. Parcels were released from vertical columns in the atmosphere at times and locations where there were reported flash floods; these were traced backward in time for 5 days. The temporal and seasonal cycles of flood events in these regions are also explored. The results show the importance of trajectories residing for long periods over oceanic regions such as the Gulf of Mexico and the Caribbean Sea. The flow is generally unidirectional with height in the lower layers of the atmosphere. The trajectory paths from oceanic genesis regions to inland hotspots and their orientation with height provide clues that can assist in the diagnosis of impending flash floods. Part II of this manuscript details the land–atmosphere interactions along the trajectory paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.