Abstract

Low- and mid-mode perturbations are possible candidates for performance limitations in cryogenic direct-drive implosions on the OMEGA laser at the Laboratory of Laser Energetics. Simulations with a 3D hydrocode demonstrated that hotspot imagers do not show evidence of the shell breakup in the dense fuel. However, these same simulations revealed that the low- and mid-mode perturbations in the dense fuel could be diagnosed more easily in the post-stagnation phase of the implosion by analyzing the peak in the x-ray emission limb at the coronal-fuel interface than before or at the stagnation phase. In experiments, the asymmetries are inferred from gated images of the x-ray emission of the implosion by using a 16-pinhole array imager filtered to record x-ray energies >800eV and an x-ray framing camera with 40-ps time integration and 20-μm spatial resolution. A modal analysis is applied to the spatial distribution of the x-ray emission from deuterium and tritium cryogenic implosions on OMEGA recorded after the bang time to diagnose the low- and mid-mode asymmetries, and to study the effect that the beam-to-target ratio (Rb/Rt) has on the shell integrity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.