Abstract

Diagnosing glaucoma progression is critical for limiting irreversible vision loss. A common method for assessing glaucoma progression uses a longitudinal series of visual fields (VFs) acquired at regular intervals. VF data are characterized by a complex spatiotemporal structure due to the data generating process and ocular anatomy. Thus, advanced statistical methods are needed to make clinical determinations regarding progression status. We introduce a spatiotemporal boundary detection model that allows the underlying anatomy of the optic disc to dictate the spatial structure of the VF data across time. We show that our new method provides novel insight into vision loss that improves diagnosis of glaucoma progression using data from the Vein Pulsation Study Trial in Glaucoma and the Lions Eye Institute trial registry. Simulations are presented, showing the proposed methodology is preferred over existing spatial methods for VF data. Supplementary materials for this article are available online and the method is implemented in the R package womblR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.