Abstract
Cancer is one of the major diseases that seriously threaten human health. Timely screening is beneficial to the cure of cancer. There are some shortcomings in current diagnosis methods, so it is very important to find a low-cost, fast, and nondestructive cancer screening technology. In this study, we demonstrated that serum Raman spectroscopy combined with a convolutional neural network model can be used for the diagnosis of four types of cancer including gastric cancer, colon cancer, rectal cancer, and lung cancer. Raman spectra database containing four types of cancer and healthy controls was established and a one-dimensional convolutional neural network (1D-CNN) was constructed. The classification accuracy of the Raman spectra combined with the 1D-CNN model was 94.5%. A convolutional neural network (CNN) is regarded as a black box, and the learning mechanism of the model is not clear. Therefore, we tried to visualize the CNN features of each convolutional layer in the diagnosis of rectal cancer. Overall, Raman spectroscopy combined with the CNN model is an effective tool that can be used to distinguish different cancer from healthy controls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.