Abstract
To understand the biogeochemical cycles of trace metals (Cd, Cu, Fe, Mn, Ni and Zn) in a hypersaline subtropical marsh, geochemical studies of both interstitial and solid phases were conducted on sediment cores from Chiricahueto marsh, SE Gulf of California. The sequential extraction procedure proposed by Tessier was used to estimate the percentages of the metals present in each geochemical phase of the sediment. Metal concentrations in the solid phase were found to be enriched in the upper layers and mainly associated with reactive fractions such as organic matter, Fe–Mn oxyhydroxides and carbonates (46–74% of Ni, Mn and Cd, and 11–19% of Cu and Zn). Principal factor analysis (PFA) and Spearman correlation analysis revealed a strong positive association of metals and their reactive phases with OC (the diagenetic component), and a negative or non-association with the mud content, Al, Fe and Li (the lithogenic component). Diagenetically released metals are mainly mobilized within hypersaline sediments by buoyancy transport (>90% of total flux) in response to an extreme salinity gradient by input of fresh groundwater (3–6 psu cm−1). The molecular diffusion due to the gradient of metals in porewater (maximum and higher levels at 5–7 and below 20 cm depth, respectively) is significantly less important to the advective transport. Most of the metals mobilized by diffusion–advection processes are re-precipitated in the sediments by authigenic minerals, only <10% of most metals are extruded out to the overlying water column. Authigenic accumulation rates were estimated as 1.42–7.09 mg m−2 a−1 for Cd; 58.8–378 for Cu; 6922–17,985 for Fe; 38.2–345 for Mn; 20.8–263 for Ni; and 282–2956 mg m−2 a−1 for Zn. The Mn–Fe oxyhydroxides (40–85% of reactive metals) in the upper oxic–suboxic layers (<5 cm below surface) and sulfide minerals (75–97%) in anoxic sediment layers (7–18 cm) constitute the main scavengers for metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.