Abstract
Hyperglycemia is an important predictor of cardiovascular mortality in patients with diabetes. We investigated the hypothesis that diabetes or acute hyperglycemia attenuates the reduction of myocardial infarct size produced by activation of mitochondrial ATP-regulated potassium (K(ATP)) channels. Acutely instrumented barbiturate-anesthetized dogs were subjected to a 60-min period of coronary artery occlusion and 3 h of reperfusion. Myocardial infarct size (triphenyltetrazolium chloride staining) was 25 +/- 1, 28 +/- 3, and 25 +/- 1% of the area at risk (AAR) for infarction in control, diabetic (3 wk after streptozotocin-alloxan), and hyperglycemic (15% intravenous dextrose) dogs, respectively. Diazoxide (2.5 mg/kg iv) significantly decreased infarct size (10 +/- 1% of AAR, P < 0.05) but did not produce protection in the presence of diabetes (28 +/- 5%) or moderate hyperglycemia (blood glucose 310 +/- 10 mg/dl; 23 +/- 2%). The dose of diazoxide and the degree of hyperglycemia were interactive. Profound (blood glucose 574 +/- 23 mg/dl) but not moderate hyperglycemia blocked the effects of high-dose (5.0 mg/kg) diazoxide [26 +/- 3, 15 +/- 3 (P < 0.05), and 11 +/- 2% (P < 0.05), respectively]. There were no differences in systemic hemodynamics, AAR, or coronary collateral blood flow (by radioactive microspheres) between groups. The results indicate that diabetes or hyperglycemia impairs activation of mitochondrial K(ATP) channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.