Abstract

The present paper aims to bring out the robust common aspects of spatio-temporal evolution of diabatic heating during the monsoon intraseasonal active phases over the continental tropical convergence zone (CTCZ). The robustness of spatio-temporal features is determined by comparing the two state-of-the art reanalyses: NCEP Climate Forecast System reanalysis and Modern ERA Retrospective Analysis. The inter-comparison is based on a study period of 26 years (1984–2009). The study confirms the development of deep heating over the CTCZ region during the active phase and is consistent between the two datasets. However, the detailed temporal evolution of the vertical structure (e.g., vertical tilts) of heating differs at times. The most important common feature from both the datasets is the significant vertical redistribution of heating with the development of shallow (low level) heating and circulation over the CTCZ region 3–7 days after the peak active phase. The shallow circulation is found to be associated with increased vertical shear and relative vorticity over certain regions in the subcontinent. This increased vertical shear and relative vorticity in the lower levels could be crucial in the sustenance of rainfall after the peak active phase. Model experiments with linear dynamics affirm the role of shallow convection in increasing the lower level circulation as observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.