Abstract

Di-(2-ethylhexyl)-phthalate (DEHP), a widely used plasticizer, is detected in consumer's body fluids. Contamination occurs through environmental and food chain sources. In mouse liver, DEHP activates the peroxisome proliferator-activated receptor alpha (PPARα) and regulates the expression of its target genes. Several in vitro investigations support the simultaneous recruitment of additional nuclear receptor pathways. We investigated, in vivo, the hepatic impact of low doses of DEHP on PPARα activation, and the putative activation of additional signalling pathways. Wild-type and PPARα-deficient mice were exposed to different doses of DEHP. Gene expression profiling delineated the role of PPARα and revealed a PPARα-independent regulation of several prototypic constitutive androstane receptor (CAR) target genes. Thus, we developed an original hepatic cell line expressing CAR to investigate its activation by DEHP. By means of a pharmacological inhibitor or CAR-targeting shRNAs, we established that CAR is required for the effect of DEHP on Cyp2b10, a recognized CAR target gene. Moreover, DEHP dose-dependently induced CYP2B6 in human primary hepatocyte cultures. This finding demonstrates that CAR also represents a transcriptional regulator sensitive to phthalates. CAR-mediated effects of DEHP provide a new rationale for most endpoints of phthalates toxicity described previously, including endocrine disruption, hepatocarcinogenesis and the metabolic syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.