Abstract

This paper presents an effective method to design active mass dampers (AMDs) for mitigating the seismic response of nonlinear frames. The method is based on using the Newmark-based instantaneous optimal control algorithm for designing AMD, as well as using distributed genetic algorithm (DGA) for optimization of the active control system. To this end, an optimization problem has been defined which considers the parameters of the active control system as design variables and minimization of the maximum required control force of AMD as the objective function with some constraints defined on the maximum stroke length of AMD. Also, the effect of design excitation on performance of AMD under testing earthquakes has been studied. To assess the capabilities of the proposed method, a numerical example has been worked out where an AMD has been designed to control the response of an eight-story nonlinear shear building frame with hysteretic bilinear elasto–plastic behavior under white noise and real earthquake excitations. The designed control systems have been tested under a number of scaled and real earthquakes including both near and far-field earthquakes. Controller’s robustness against variations of structural parameters has also been assessed. The results of numerical simulations show the effectiveness, simplicity and capability of the proposed method in designing AMDs for nonlinear frames. Also comparing the performance of AMD system with that of passive tuned mass damper and active tendon control shows that the AMD has been more effective in reducing the seismic response of nonlinear frames under design and different testing earthquakes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.