Abstract

The effect of the pre-adsorption of sulfur on the hexagonal-Mo_{2}C-001 surface in the hydrodechlorination HDC reaction of chlorobenzene was studied using density functional theory DFT calculations. The results related with the coordination modes and the adsorption energies of the aromatic molecule suggest that the main effect of the sulfur incorporation into the surface is to lead towards a weaker chlorobenzene adsorption that will benefit the continuity of the catalytic cycle and therefore to avoid the carbonization and chlorination of the catalyst. The study of the HDC mechanism was also performed and two different reaction paths were considered. The calculated energy barriers indicate that both mechanisms may occur at the normal reaction temperature 350°C. These latter approaches involve new roles of the superficial sulfur as atomic or radical hydrogen scavenger for the S-Hformation and as a precursor of the σ chlorobenzene coordination, necessary for effective hydrogenation in the proposed mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.