Abstract

Supercritical water gasification (SCWG) is hopefully to be an acceptable choice for hydrogen production, the hydroxide ion assisted water gas shift reaction (WGSR) has been regarded as the most important reaction to generate hydrogen during the process. However, the principle of practical OH− catalyzed reaction is not possible to acquire by experiments. Thus, density functional theory (DFT) is utilized to investigate the reaction mechanism theoretically in this work. Through first principle calculations, every species and energy barrier for elementary steps are achieved, and formate ion is determined as the important intermediate. Besides, HCOO− + H2O → HCO3− + H2 is the dominant path to generate hydrogen, as well as the rate-determining step with 47.94 kcal/mol energy barrier. Furthermore, the reaction rate constant is calculated to be kcatalytic(s−1) = 2.34 × 1012exp(−1.80 × 105/RT) using transition state theory with Wigner transmission coefficient (TST/w). Lastly, supercritical water condition is demonstrated to be a favored media for WGSR, because it may dissociate, dissolve or hydrolyze more hydroxide anion than conventional steam. The results are expected to benefit the control of reaction process and the design of SCWG reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.