Abstract

Abstract NiTi alloy has important properties such as shape-memory, super-plasticity, resistance, and biocompatibility, therefore is frequently used in biomedical devices. We studied the oxidized form of this alloy and possible Ni segregation in three possible models for the TiO2/NiTi interface: i) the perfect interface; ii) the Ni enriched interface and iii) with oxygen vacancies in the TiO2 coating. We used DFT + U calculations for TiO2, because Hubbard correction encourages localization of the excess electronic charge and improves the DFT results. A standard spin polarized DFT was used for NiTi. We obtained the optimized geometries for each model and computed segregation energy, electronic structure, magnetic moment and bond order for the interface and for Ni segregation. Our calculations indicated that Ti3+ species are present at the interface, while in the bulk of the oxide layer the species is the Ti4+. Also, the electronic structure show that the metallic character of the alloy is unaffected by the interaction with oxygen. These results are consistent with experimental data from literature. Ni enriched interface containing O vacancies show a strong geometric distortion in the TiO2 layers. In all cases, Ni segregation is an a thermodynamically unfavorable process, helping to understand the biocompatibility of NiTi alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.