Abstract
DFT modeling was used to understand the role of epoxide (C-O-C) and hydroxyl (C-OH) functional groups on the spillover mechanism for hydrogen storage on graphite oxide and oxygen-modified carbons. A primary spillover model was used, consisting of a Pt(4) cluster, a graphite substrate model, and O and OH functional groups adsorbed on graphite. The spillover mechanism was found to proceed via the migration of dissociated hydrogen atoms from the Pt cluster to epoxide groups adjacent to the cluster (to form OH), followed by H migration by hopping on the adsorbed O atoms. The low energy barriers required for the relevant elementary steps indicate that the spillover process is facile when the carbon substrate is decorated with oxygen functionalities, leading to enhanced hydrogen uptake and faster charge/discharge kinetics. However, a reaction path was also identified, in which surface OH groups can react to form water, which can have adverse consequences for hydrogen storage on oxygenated carbons via spillover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.