Abstract

Polynitro cage compound 4-trinitroethyl-2,6,8,10,12-pentanitrohexaazaisowurtzitane has the same framework with but higher stability than CL-20 and is a potential new high energy density compound (HEDC). In this paper, the B3LYP/6-31G(d,p) method of density functional theory (DFT) has been used to study its heat of formation, IR spectrum, and thermodynamic properties. The stability of the compound was evaluated by the bond dissociation energies. The calculated results show that the first step of pyrolysis is the rupture of the N-NO(2) bond in the side chain and verify the experimental observation that the title compound has better stability than CL-20. The crystal structure obtained by molecular mechanics belongs to the P2(1)2(1)2(1) space group, with lattice parameters a = 12.59 Å, b = 10.52 Å, c = 12.89 Å, Z = 4, and ρ = 2.165 g·cm(-3). Both the detonation velocity of 9.767 km·s(-1) and the detonation pressure of 45.191 GPa estimated using the Kamlet-Jacobs equation are better than those of CL-20. Considering that this cage compound has a better detonation performance and stability than CL-20, it may be a superior HEDC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.