Abstract

We present drug force-field recalibration (DFFR), a new method for refining of automatic force-fields used to represent small drugs in docking and molecular dynamics simulations. The method is based on fine-tuning of torsional terms to obtain ensembles that reproduce observables derived from reference data. DFFR is fast and flexible and can be easily automatized for a high-throughput regime, making it useful in drug-design projects. We tested the performance of the method in a few model systems and also in a variety of druglike molecules using reference data derived from: (i) density functional theory coupled to a self-consistent reaction field (DFT/SCRF) calculations on highly populated conformers and (ii) enhanced sampling quantum mechanical/molecular mechanics (QM/MM) where the drug is reproduced at the QM level, while the solvent is represented by classical force-fields. Extension of the method to include other sources of reference data is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.