Abstract

A simple technique for patterning proteins utilizing dewetted polystyrene (PS) droplets is demonstrated. A polystyrene thin film was spin coated on a poly(ethylene glycol) (PEG) silane-modified surface. As the PS film dewets from the surface, upon annealing, to form droplets, the PEG-silane-modified surface is exposed, which retains its capability to resist protein adsorption, and the PS droplets allow the selective adsorption of proteins. In contrast to the undewetted flat PS film, the droplet surface had a greater amount of adsorbed proteins. Atomic force microscopy scans reveal that the roughness of the droplet surface is higher, and a multilayer of proteins results on the droplet surface. Moreover, micro- and nanoscale droplet patterns can easily be achieved by tuning the thickness of PS thin films. Because dewetting approaches for generating ordered dewetting droplets have been successfully generated by others, those approaches could be easily combined with this technique to fabricate ordered protein patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.