Abstract

‘The micro/nano reinforced particle’ aluminum metal matrix composites (Al-MMCs) are widely used in manufacturing sector due to light-weight, superior strength-to-weight ratio, better fracture toughness, improved fatigue, and tensile property, enhanced corrosion resistance to harsh environment, etc. This article provides an overview of the manufacturing processes and different reinforcing elements used during the synthesis of Al-MMCs. Generally, the reinforced particles like carbides, nitrides, and compounds of oxides are used. Different organic, inorganic, industrial and agricultural waste which can be used for reinforcement in the aluminum matrix is highlighted with their feasible applications. The common mechanical properties (i.e. hardness, tensile and compressive strength, etc.) reported by different researchers are thoroughly discussed with the aim to highlight the amount of reinforcement and improvement occurred during processing. The formation and methodology for mixing condition and sintering behaviour of Al-MMCs are discussed to impart knowledge about the processing circumstances in powder metallurgical route. The affecting conditions during operating and responsible factor for the tribological behaviour are deliberated in a precise manner to recognize the potentiality of reinforcing particles in Al-MMCs. Finally, the different shortcomings and future prospects of the Al-MMCs are given to encourage the future research directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.