Abstract

Disruption in chitin regulation by using chitin synthesis inhibitor (novaluron) was investigated to gain insights into the biological activity of chitinase in red palm weevils, an invasive pest of date palms in the Middle East. Impact of novaluron against ninth instar red palm weevil larvae was examined by dose-mortality response bioassays, nutritional indices, and expression patterns of chitinase genes characterized in this study. Laboratory bioassays revealed dose-dependent mortality response of ninth-instar red palm weevil larvae with LD50 of 14.77 ppm of novaluron. Dietary growth analysis performed using different doses of novaluron (30, 25, 20, 15, 10, and 5 ppm) exhibited very high reduction in their indexes such as Efficacy of Conversion of Digested Food (82.38%) and Efficacy of Conversion of Ingested Food (74.27%), compared with control treatment. Transcriptomic analysis of red palm weevil larvae characterized numerous genes involved in chitin degradation including chitinase, chitinase-3-like protein 2, chitinase domain-containing protein 1, Endochitinase-like, chitinase 3, and chitin binding peritrophin-a domain. However, quantitative expression patterns of these genes in response to novaluron-fed larvae revealed tissue-specific time-dependent expression patterns. We recorded overexpression of all genes from mid-gut tissues. Growth retarding, chitin remodeling and larvicidal potential suggest novaluron as a promising alternate for Rhynchophorus ferrugineus management.

Highlights

  • The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera, Curculionidae) is an important transboundary plant pest causing huge economics losses by infesting date palm plantations in the MENA (Middle East and North Africa) region

  • Significant differences in mortality of red palm weevil larvae were reported at all recorded time intervals (F = 146.85; df = 2, 60; p < 0.0001), using different doses of novaluron

  • Novaluron is an important insect growth regulator that is highly effective against immature stage of insect pest species by disrupting chitin synthesis mechanism

Read more

Summary

Introduction

The red palm weevil (RPW), Rhynchophorus ferrugineus (Olivier) (Coleoptera, Curculionidae) is an important transboundary plant pest causing huge economics losses by infesting date palm plantations in the MENA (Middle East and North Africa) region. Red palm weevils spend their early life stages within the trunk and generally take about 3–4 months to complete their life cycle [1,2]. Neonate legless larvae (grubs) feed on soft plant tissues, create feeding galleries, and start moving toward the center of palm tree. These concealed larvae (legless creamy white) grow up to 5 cm in length.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.