Abstract

In this work, we have investigated the role of CRM1/XPO1, a protein involved in specific export of proteins and RNA from the nucleus, in early Xenopus embryogenesis. The cloning of the Xenopus laevis CRM1, XCRM1, revealed remarkable conservation of the protein during evolution (96.7% amino acid identity between Xenopus and human). The protein and mRNA are maternally expressed and are present during early embryogenesis. However, our data show that the activity of the protein is developmentally regulated. Embryonic development is insensitive to leptomycin B, a specific inhibitor of CRM1, until the neurula stage. Moreover, the nuclear localization of CRM1 changes concomitantly with the appearance of the leptomycin B sensitivity. These data suggest that CRM1, present initially in an inactive form, becomes functional before the initiation of the neurula stage during gastrula-neurula transition, a period known to correspond to a critical transition in the pattern of gene expression. Finally, we confirmed the gastrula-neurula transition-dependent activation of CRM1 by pull-down experiments as well as by the study of the intracellular localization of a green fluorescent protein tagged with a nuclear export signal motif during early development. This work showed that the regulated activity of CRM1 controls specific transitions during normal development and thus might be a key regulator of early embryogenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.