Abstract
Gonadal soma-derived factor (gsdf) is reported to be a male initiator in medaka based on loss- and gain- of function via targeted disruption, or transgenic over-expression. However, little is known about how gsdf promotes undifferentiated gonad entry into male pathways or prevents entry into the female pathway. We utilized a visible folliculogenesis system with a reporter cassette of dual-color fluorescence expression to identify difference between oocyte development from wildtype and gsdf deficiency medaka. A red fluorescent protein (RFP) is driven by a major component of the synaptonemal complex (SYCP3) promoter which enables RFP expression solely in oocytes after the onset of meiosis, and a histone 2b-EGFP fused protein (H2BEGFP) under the control of an elongation factor (EF1α) promoter, wildly used as a mitotic reporter of cell cycle. This mitosis-meiosis visible switch revealed that early meiotic oocytes present in gsdf deficiency were more than those in wildtype ovaries, corresponding to the decrease of inhibin expression detected by real-time qPCR analysis, suggesting gsdf is tightly involved in the process of medaka oocyte development at early stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.