Abstract

BackgroundPerinatal stroke often leads to lifelong motor impairment. Two common subtypes differ in timing, location, and mechanism of injury: periventricular venous infarcts (PVI) are fetal white matter lesions while most arterial ischemic strokes (AIS) are cortical injuries acquired near term birth. Both alter motor system development and primary motor cortex (M1) plasticity, often with retained ipsilateral corticospinal fibers from the non-lesioned motor cortex (M1′). MethodsTask-based functional magnetic resonance imaging was used to define patterns of motor cortex activity during paretic and unaffected hand movement. Peak coordinates of M1, M1′, and the supplementary motor area in the lesioned and intact hemispheres were compared to age-matched controls. Correlations between displacements and clinical motor function were explored. ResultsForty-nine participants included 14 PVI (12.59 ± 3.7 years), 13 AIS (14.91 ± 3.9 years), and 22 controls (13.91 ± 3.4 years). AIS displayed the greatest M1 displacement from controls in the lesioned hemisphere while PVI locations approximated controls. Peak M1′ activations were displaced from the canonical hand knob in both PVI and AIS. Extent of M1 and M1′ displacement were correlated (r = 0.50, P = 0.025) but were not associated with motor function. Supplementary motor area activity elicited by paretic tapping was displaced in AIS compared to controls (P = 0.003). ConclusionMotor network components may be displaced in both hemispheres after perinatal stroke, particularly in AIS and those with ipsilateral control of the affected limb. Modest correlations with clinical function may support that more complex models of developmental plasticity are needed to inform targets for individualized neuromodulatory therapies in children with perinatal stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.